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Predicting Fiber Contact in a Three-Dimensional
Model of Paper
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We present a new methodology for the mathematical analysis of 3D paper
structure and apply it to a model that can be simulated on a computer. We
rigorously derive upper and lower bounds for fiber contact areas, and derive an
approximation that is very close to values calculated from the simulations. The
method involves the stochastic geometry and combinatorics of large numbers of
randomly located sets, which quantify the interactions between fibers. The main
calculation involves a sum resembling a partition function with many-body
interactions of all orders.

KEY WORDS: Paper structure; fiber physics; relative bonded area; random
sets; geometric probability.

1. INTRODUCTION

In common paper, about 1�4 to 1�2 of the total surface area of fibers is in
mutual contact, i.e., closer than the wavelength of light. Inter-fiber contact
area is important for several reasons. Contact areas do not scatter light and
so influence the opacity of paper. Contact areas are potential sites for inter-
fiber bonding, and degree of bonding influences the load distribution along
fibers and hence paper stiffness.(1) Degree of bonding obviously influences
paper strength. Indeed, bonded area appears explicitly in several formulae
for paper stiffness and strength.(1�3) Fiber contact is also well correlated
with paper density or porosity, and hence with permeability.

However there is currently no adequate theoretical predictor of fiber
contact in terms of fiber properties and paper-making parameters, which
very much limits the usefulness of formulae for paper stiffness and strength.
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The essential difficulty is the complexity of the 3D structure formed by the
compacted random mat of deformed fibers.

Recently, fiber contact and other structural properties have been
estimated via computer simulation of the 3D paper structure.(4�9) Fibers
are laid down one by one on a flat base and flex so as to partially conform
to previous fibers (Fig. 1). The base is a square with a large number of
square cells, and the vertical coordinate is discrete, so there is a large 3D
array of cells, or a 3D lattice.

We take fibers to be oriented only in the 2 orthogonal horizontal
directions of the lattice. Niskanen et al.(6) deal mainly with this case, which
they refer to as ``orthotropic.'' Despite this simplification, the model shows
most of the basic structural features, and gives results similar to more com-
plex simulations.(5, 6) Our fibers are one cell wide and extend right across
the square. In order to avoid edge effects, periodic boundary conditions are
applied. Fibers have equal thickness of t vertical cells, where t can be any
positive integer.

The flexing rule is that a fiber can make at most one vertical lattice step
per horizontal lattice step. Otherwise each fiber is lowered as far as possible
without penetrating other fibers. This leads to fibers forming ramp-like
structures with segments of fixed slope. The flexing rule roughly imitates
the response of fibers, having intrinsic stiffness, to cohesive forces and
applied pressure. The resulting structure (Fig. 1) is vertically asymmetric,
having a flat base, resembling a calendered surface, and a rough top.

Two orthogonal fibers cross in the manner of Fig. 2(a). Figures 2(b)
and (c) are equivalent discrete representations. Real fibers are hollow
tubes, which collapse to different degrees in different types of paper; this
depends on how much the pulp has been processed and the fibers softened.
Thus fiber width might be up to 5 times fiber height, so cell width might
be up to 5t times cell height. However, it is evident that the most basic

Fig. 1. Section view of a small ``orthogonal fiber'' simulation on a 100_100 base with 1000
fibers, each being a deformed rectangular rod 1 cell wide, 2 cells thick (t=2) and extending
right across the square. The 2 allowed fiber directions, parallel to the edges of the base, are
equally probable.
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Fig. 2. (a) Sketch of a fiber bridging over another orthogonal to it on a flat base. (b) A dis-
crete representation of (a) with fibers 1 cell wide and t=3 cells high, as in Fig. 2 of ref. 6.
(c) A convenient graphical representation equivalent to (b).

structural properties are independent of the vertical scale. All that matters
is the value of t.

Although fibers are 1 cell wide, it is convenient to represent them
graphically as single vertical planar strips centred on cells, as in Fig. 2(c).
The upper fiber forms a ramp-like bridge over the lower one. The upper
fiber fails to make contact with the base over an interval comprising 2t&1
cells. Evidently t is a natural indicator of fiber flexing. More generally,
refs. 4�6 define a dimensionless fiber flexing number

F=
fiber width

t
(1.1)
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which is 1�t in our case. The structure formed by such fibers is determined
entirely by F. Large F generates a dense structure while small F generates
an open more porous structure. One could directly measure the F of real
fibers via the Cyberflex apparatus(10) and use it to characterize the struc-
ture of real paper. Also, one can relate F to applied pressure and fiber stiff-
ness using standard theory for the bending of beams.(10, 5)

Restricting fibers to width 1 implies a coarse discretization, and a
limitation on possible fiber configurations. It also limits fiber flexibility,
somewhat artificially, to values 1, 1�2, 1�3, etc.

Provided fiber length greatly exceeds t, length has negligible influence
on paper structure. This would be true for real intact fibers; hence our fully
spanning fibers. Real paper also contains small quantities of particles and
fiber fragments, known as ``fines.'' These are not included in the present
model.

Fibers are deposited with angles randomly chosen from the 2 orthogonal
directions with equal probability. The lateral coordinate of a fiber is
uniformly random across the square. Figure 1 is a section view of a simula-
tion with t=2 and 1000 fibers on a 100_100 base There are 200 sections,
so on average one would see only 5 fibers lying entirely in such a section.
References 4 and 6 report extensive simulations and fitted curves for this
model on a 1000_1000 base. Here we present some new simulations on a
5000_5000 base. Structural properties such as density and fiber contact
are easily computed from the simulations.

The question we address here is: Can one predict mathematically the
properties of such simulated paper, on average, without performing simula-
tions? Even for our simple model, the 3D structure is immensely complex,
and presents challenging mathematical problems. The methodology we pre-
sent provides a means of tackling these problems, as well as more general
paper structure. It involves the stochastic geometry and combinatorics of a
large number of randomly located sets, which quantify the interactions
between fibers.

Our mathematical predictions agree closely with our simulations. The
main results are reported in Section 3, while Sections 4 to 8 contain the
mathematics. Section 9 discusses some extensions of the present work.

2. INTER-FIBER CONTACT AND BASE-TO-FIBER CONTACT

Here we show how inter-fiber contact is related to contact area of
fibers with the base, quantified by the relative basal contact area

RBCA=|B |�|0| (2.1)
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where 0 is the basal square (of cells), B the set of fiber surface (cells) in
contact with 0, and | | indicates the area or number of cells in the set.
RBCA is of structural interest in its own right since it measures the
smoothness of the ``calendered'' surface, i.e., 1-RBCA is the proportion of
imperfect or indented surface. The relative contact area (RCA) is the
proportion of the total fiber surface area which is in mutual contact. It is
related to RBCA as follows.

We notionally generate an independent but statistically identical simu-
lation, invert it and place it in contact with the first on the common 0.
Then some of the contacts with 0 will become inter-fiber contacts. The
combined structure has

RCA=|C |�|A| (2.2)

where A is the total fiber surface (we count the upper and lower surface of
every fiber but not the vertical edges of the notionally rectangular fibers)
and C is the subset of A where inter-fiber contacts occur (we count the con-
tributions from both fibers in mutual contact). If D is any random surface
with non-empty A & D, then

|C & D|�|A & D| (2.3)

is an unbiased estimator of RCA. Hence

RCA
t

=|C & 0|�|A & 0| (2.4)

is an estimator of RCA, but may be biased because 0 is not randomly
chosen and fibers cannot cross 0. If the simulation below 0 makes fiber
contact with 0 in a set B$, then the total area of fiber in contact with 0
is |A & 0|=|B |+|B$| and the total area of mutual fiber contact occurring
on 0 is |C & 0|=2 |B & B$|. Thus

RCA
t

=2 |B & B$|�( |B |+|B$| ) (2.5)

If the number of fibers in contact with 0 is large (as in our simulations)
then these areas are close to their statistical means. The statistical inde-
pendence of the upper and lower simulations implies that |B & B$| has
mean b2�|0| where b is the mean of |B | (or |B$| ). Thus, as b, |0| � � for
fixed b�|0|,

RCA
t

tb�|0|tRBCA (2.6)

because of (2.1).
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Table I. Values of RCA and RBCA from Five Simulations with a
Range of Values of t

t 1 2 3 5 10

RCA 0.607 0.417 0.273 0.177 0.096
RBCA 0.737 0.373 0.250 0.152 0.077

We performed some simulations to test this conclusion. The base was
a 5000_5000 lattice. For each t we ran a long simulation with enough
fibers to feel confident that the computed RCA had reached a stationary
value. Basal contacts cease to be made much earlier in the simulations.
Table I shows the results. These support (2.6), especially in the middle
range 0.2 to 0.4 which is typical of real paper. We note that RCA>RBCA
except in the case t=1. This case is somewhat special; a fiber crossing
another lying flat on the base can conform perfectly without leaving a gap.
This plausibly has the effect of enhancing RBCA. These and other simula-
tions are reported in more detail in Section 3. Our values of RCA are
broadly consistent with the more complex simulations reported in ref. 6.

For thin paper, RCA is reduced because surface fibers have less con-
tact area. In some applications, one is more interested in the RCA of fibers
that are ``internal'' in some sense. Then D should be restricted to internal
random surfaces, so RBCA has added plausibility as a measure of such an
RCA.

3. THE MAIN RESULTS

As in ref. 6, one is interested in the dependence of paper structure on
the coverage c, defined as the mean number of fibers vertically above a cell
(in the Z direction). In our model c=N�L for N fibers on a base of side
L. In our simulations (and in real paper) N is large and the paper diameter
L exceeds the fiber flexing distance t by many orders of magnitude. Conse-
quently the mathematical regime of interest is N, L � � while N�L � c for
fixed c and t. We write ;(c) for the RBCA in this regime. Here we quote
our main results for ;(c) and compare them with simulations. Results for
finite N and L and for Poisson N are given in later sections. We shall prove
(Sections 4�7) that

;
�
(c)<;(c)<;� (c) (3.1)

where

;� (c)=(1&e&ct)�t (3.2)
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and

;
�
(c)={c(1&ct)

1�(4t)
if c�1�(2t)
if c�1�(2t)

(3.3)

In particular, for thick enough paper,

1
4t

<;(�)<
1
t

(3.4)

We also obtain the slightly better lower bound

;(c)>;&(c)={(2t&2ct+1) ec&2t&1
2te1�2t&2t&1

if c�1�(2t)
if c�1�(2t)

(3.5)

For example, if t=1 this gives ;(c)>0.295 for c�1�(2t), while (3.3) gives
only ;(c)>0.25.

These results are obtained by a method involving the statistical
geometry of regions of the base controlled by successive fibers. The regions

Fig. 3. The bounds ;� (c), ;
�
(c), ;&(c) and the estimate ;� (c) for the RBCA, given by

Eqs. (3.1) to (3.6), plotted against the coverage c when t=2.
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Table II. Theoretical and Simulation Values of RBCA at Infinite Coverage
for a Range of Values of t

t 1 2 3 5 10

2�(et) 0.7358 0.3679 0.2453 0.1472 0.0736
simulations 1 0.7366 0.3732 0.2502 0.1518 0.0768
simulations 2 0.7228 0.3663 0.2465 0.1498 0.0760
simulations 3 0.7278 0.3693 0.2465 0.1482 0.0747

are difficult to quantify exactly, but by using plausible estimates of their
means we obtain (Section 8)

;(c)&;� (c)={ce&ct�2

2�(et)
if c�2�t
if c�2�t

(3.6)

All these these results suggest that ;(�) is proportional to 1�t, i.e., to the
flexing number F. This may be compared with the simulations in ref. 6

Fig. 4. Comparison of the predicted RBCA (solid lines) given by (3.6) with simulations
(broken lines) of the orthogonal fiber model on a 5000_5000 base. Fibers have thicknesses
of t=1, 2, 3, 5, and 10, corresponding to flexing numbers 1, 1�2, 1�3, 1�5, and 1�10.
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(their Fig. 3) though their fibers are not confined to width 1. Our Fig. 3 is
a plot of these results against c for t=2.

We compare ;� (c) with simulations on a 5000_5000 grid (i.e.,
L=5000). Each simulation was continued until one could be confident that
no further basal contact would occur. Table II compares 2�(et) with com-
puted ;(�) for 3 replicate simulations for a range of t values. Each of
simulations i uses the same random number seed. Figure 4 shows plots of
;� (c) against c, compared with the simulations 1, the others being very
similar. Evidently ;� (c) is an excellent approximation.

4. UPPER BOUND ON RBCA

When the first fiber is placed on the base it makes basal contact with
a set S(1) say of L cells. A second parallel fiber can make basal contact
with L of the remaining L(L&1) cells. But for a fiber orthogonal to the
first, only L(L&2t+1) sites are available; i.e., fiber 1 obscures a strip
2t&1 cells wide from basal contact by any subsequent fibers orthogonal to
it. We write T (1, 2) for the set obscured from fiber 2 by fiber 1 in general.
The basal contact of fiber number k is obscured in a complex way by fibers
1, 2,..., k&1, which will form a random stack in general. It is evident that
the set obscured from k is at least as great as if fibers 1, 2,..., k&1 ``ignored''
each other and lay in perfect contact with the base. Thus the obscured set
contains the set

T (1, k) _ T (2, k) _ } } } _ T (k&1, k) (4.1)

where T ( j, k) is the set obscured from fiber k by fiber j alone, when j lies
flat on the base. Thus, if fibers i and k are parallel, T (i, k) is the set of basal
cells in contact with fiber i; if they are perpendicular, T (i, k) is a strip
2t&1 wide around fiber i. If S(k) is the set of L cells below fiber k, then
the set B(k) where fiber k makes basal contact satisfies

B(k)/S(k)> .
k&1

i=1

T (i, k) (4.2)

We define fiber i 's position by an angle variable ,i having two values (e.g.,
0 for easterly and 1 for northerly) and the corresponding column or row
number xi with values 1, 2,..., L. We take the two angles to be equally prob-
able and the xi to be random and uniformly distributed on (1,..., L).
We write I(k)#I(,k , xk , u, v) for the indicator function of S(k), i.e., I(k)
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takes value 1 if cell (u, v) lies in S(k) but 0 otherwise. Also J(i, k)#
J(,i , xi , ,k , xk , u, v) denotes the indicator function of T (i, k). Then we
have

|B(k)|� }S(k)> .
k&1

i=1

T (i, k) }= :
L

u=1

:
L

v=1

I(k) `
k&1

i=1

[1&J(i, k)]

=B� (k), say (4.3)

Denoting means over all the , 's and x 's by ( ) and using the statistical
independence of fibers, we have

(B� (k))= :
u, v

1
2

:
,k

1
L

:
xk

I(k)[1&T(k)]k&1 (4.4)

where

T(k)#T(,k , xk , u, v)=
1
2

:
,i

1
L

:
xi

J(i, k) (4.5)

Now

1 if ,i=,k=0 and v=xi

1 if ,i=,k=1 and u=xi

J(i, k)={1 if , i=0, ,k=1 and xi&t+1�v�x i+t&1

1 if ,i=1, ,k=0 and xi&t+1�u�x i+t&1

0 otherwise

Then for given ,k , the sum contributes 2t&1 if fibers i and k are per-
pendicular and 1 if they are parallel; so, for all ,k , xk , u and v,

T(k)=(2t&1+1)�(2L)=t�L (4.6)

Since

:
u, v

I(k)=|S(k)|=L (4.7)

we have

(B� (k)) =L(1&t�L)k&1 (4.8)
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and the upper bound on the mean RBCA for N fibers is

1
L2 :

N

k=1

(B� (k))=[1&(1&t�L)N]�t (4.9)

For a Poisson number of fibers with mean cL this becomes (1&e&ct)�t,
which is also the limit of (4.9) as N, L � � and N�L � c. This proves (3.2).

5. COMBINED EFFECT OF OBSCURING SETS

To obtain our lower bounds and our approximation for RBCA we
need to estimate the region or set on the base obscured from contact with
fiber k due to the combined effect of fibers 1,..., k&1. Fibers 1,..., k&1 may
form a complex stack, so their combined influence will be very complex.
Finding a way of dealing adequately with this complexity is a basic
problem in paper science. The following is a step in that direction. We for-
mulate the method in terms of a lower bound on RBCA, but it also has
application to the approximation (3.6) as described in Section 8.

From the previous section it is evident that

B(2)#S(2)"T1(1) (5.1)

where T1(i)#T1(,i , xi) is a strip of width 2t&1 around fiber i, regardless
of the angle between fiber 1 and subsequent fibers. The region obscured
from fiber 3 by fibers 1 and 2 is no greater than T1(1) _ T1(2) except in
configurations where fiber 2 lies on top of and parallel to fiber 1, and fiber
3 bridges over the resulting barrier of height 2t. Let T2(i)#T2(,i , xi) be a
strip of width 4t&1 around fiber i. In this particular configuration the
obscured set is no larger than T2(1)=T2(2)=T2(1) & T2(2). Thus in
general

B(3)#S(3)"W(1, 2) (5.2)

where

W(i, j)=T1(i) _ T1( j) _ [T2(i) & T2( j)] (5.3)

Now consider B(4). Because fibers form linear ``diagonal'' bridges, one
can see that if there is no square of side t that contains a segment of each
of fibers 1, 2, and 3, then fibers 1, 2 and 3 obscure from 4 no more than
every pair of fibers, i.e., no more than

W(1, 2) _ W(1, 3) _ W(2, 3) (5.4)
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If the fibers 1, 2 and 3 have a common point then they form simple struc-
tures that reach a height 3t, and obscure no more than the further set

T3(1) & T3(2) & T3(3) (5.5)

where T3(i)#T3(,i , x i) is a strip of width 6t&1 around fiber i. When fiber
i is displaced from such a configuration the structure decreases in height,
so fiber i 's contribution to the obscured set is still less than T3(i). Thus the
set obscured from fiber 4 never exceeds the union of (5.4) and (5.5), and so

B(4)#S(4)"W(1, 2, 3) (5.6)

where

W(i, j, k)=T1(i) _ T1( j) _ T1(k)

_ [T2(i) & T2( j)] _ [T2(i) & T2(k)] _ [T2( j) & T2(k)]

_ [T3(i) & T3( j) & T3(k)] (5.7)

By similar reasoning one concludes that

B(k)#S(k)"W(1,..., k&1) (5.8)

where

W(1,..., j)= .
E/(1,..., j)

,
i # E

T |E|(i) = .
j

r=1

.
E # 4(r, j)

,
i # E

Tr(i) (5.9)

where Tr(i) is a strip of width 2rt&1 around fiber i and 4(r, j) is the set
whose elements are the r-member subsets of (1, 2,..., j), e.g., 4(2, 3)=
[(1, 2), (1, 3), (2, 3)]. If 2(k&1)t&1>L then Tk&1 covers the base, so
W(1,..., k&1)=0 and the right side of (5.8) is empty. This reflects the fact
that ultimately no more fibers can make contact with the base.

6. RECURRENCE RELATION FOR CONTACT AREAS

Having derived formulae for contact sets we now consider the areas of
these sets. The developments in this section are essentially algebraic and
combinatorial, and apply to more general models that lead to expressions
of the form (5.8)�(5.9) with

Tr(i)/Tr+1(i) for all r, i (6.1)
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This could include fibers with real valued locations, arbitrary orientations
and arbitrary lengths. Let Jr(i)#Jr(, i , xi , u, v) be the indicator function of
Tr(i). Then (5.8) gives

|B(k)|� :
u, v

I(k) 6(k&1)=B
�
(k) say (6.2)

where

6( j)= `
j

r=1

8r( j) (6.3)

is the indicator of 0"W(1,..., j),

8r( j)= `
E # 4(r, j)

1r(E ) (6.4)

and

1r(E )=1& `
i # E

Jr(i) (6.5)

There is a formal resemblance between 6( j) and a Gibbs distribution for j
particles. It involves r-body interactions 1r(E ) for all r, though the interac-
tions operate only in the vicinity of point (u, v). Ultimately 6( j) is summed
over the fiber coordinates in the ``partition function.'' (6.21). We now derive
recurrence relations connecting the 6( j). First

6(k)=6(k&1) F(k) (6.6)

where

F(k)= `
k

r=1

`
E # 4(r&1, k&1)

_1&Jr(k) `
i # E

Jr(i)& (6.7)

To see this, consider just those factors in 8r( j) that involve Jr(k). For any
indicator functions G: and H

`
:

(1&HG:)=1&H+H `
:

(1&G:) (6.8)

Hence

F(k)= `
k

r=1

[1&Jr(k)+Jr(k) 9r(k&1)] (6.9)
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where 91=0 and for r>1

9r( j)= `
E # 4(r&1, j)

1r(E ) (6.10)

Now multiply out the product over r in F(k). Since (6.1) implies
Jr(i) Js(i)=Jr(i) for any r<s, we have

`
s

r=1

[1&Jr(k)]=1&Js(k) (6.11)

and therefore F(k) reduces to

F(k)= :
k&1

r=1

[Jr+1(k)&Jr(k)] `
k

s=r+1

9s(k&1)+1&Jk(k) (6.12)

Now multiply 6(k&1) by F(k) and note from (6.1) that

1r(E ) 1r(E$)=1r(E ) if E/E$ (6.13)

so that

8r( j) 9r( j)=9r( j) (6.14)

and that

1r&1(E ) 1r(E )=1r(E ) (6.15)

so that

8r&1( j) 9r( j)=9r( j) (6.16)

Thus we find

6(k)= :
k&1

r=1

[Jr+1(k)&Jr(k)] `
r&1

p=1

8p(k&1) `
k

q=r+1

9q(k&1)

+[1&Jk(k)] 6(k&1) (6.17)

One can regard 6( j) as a function of the vector T=(T1 ,..., Tn) of all
obscuring sets not larger than the base;

6( j)#6j (T) (6.18)
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The suffix on 6j indicates that it in fact depends only on T1 ,..., Tj . Then
6j (Tr1

,..., Trn
) means that J1 ,..., Jn are replaced by Jr1

,..., Jrn
in the defini-

tion of 6( j). Thus we can write

6k(T)= :
k&1

r=1

[Jr+1(k)&Jr(k)] 6k&1(T"Tr)+[1&Jk(k)] 6k&1(T)

(6.19)

for 2kt&1<L, while 6k=0 for larger k. We recall that 6k is a function
also of u, v and all of the ,i and xi for i=1,..., k.

The lower bound B
�
(k) has a statistical mean

(B
�
(k))= :

u, v

(I(k) 6k&1(T)) (6.20)

It turns out that the mean

bj=(6j (T)) =L& jQj (%) (6.21)

depends only on %=(%1 ,..., %n), where %r=|Tr |�L. In our specific model,
%r=2rt&1. Since 6k&1 involves only fibers 1,..., k&1, and I(k) involves
only fiber k, the statistical independence implies

(B
�
(k)) = :

u, v

(I(k)) bk&1 (6.22)

Taking means of (6.19) and noting that (Jr(i))=%r �L we see that the
``partition function'' Qj satisfies

Qj (%)= :
j&1

r=1

(%r+1&%r) Qj&1(%"%r)+(L&%j)+ Qj&1(%) (6.23)

where (x)+#max(x, 0). This equation implies that Qj=0 for 2jt&1>L
without the need to specify any truncation. Since Q0=1, the recurrence
relation determines all the Qj 's. The relations imply that the Qj are inde-
pendent of u and v, so (6.22) reduces to

(B
�
(k)) =Lbk&1 (6.24)

and so the mean RBCA has lower bound

;
�

N=
1
L

:
N

k=1

bk&1 (6.25)
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for N fibers. If N is a Poisson random variable with mean cL then the
mean RBCA has lower bound

;
�
(c)=e&cL :

�

N=1

(cL)N

N!
;
�

N=|
c

0
dc$ e&c$LQ(c$) (6.26)

where

Q(c)= :
�

k=0

ck

k!
Qk(%) (6.27)

is the ``grand partition function.''
The recurrence relation (6.23) implies that the Qj have the form

Qj (%)=(L&%j)+ Q� j (%) (6.28)

where the Q� j satisfy the similar recurrence relation

Q� j (%)= :
j&1

r=1

(%r+1&%r) Q� j&1(%"%r)+(L&%j&1) Q� j&1(%) (6.29)

with Q� 1=1. For example, Q� 2(%)=L+%2&2%1 and

Q� 3(%)=(%2&%1)(L+%3&2%2)+(%3&%2)(L+%3&2%1)

+(L&%2)(L+%2&2%1) (6.30)

For general j there are 2 j linear equations for the same number of
unknowns, corresponding to all the subsets of (1,..., j). Solving (6.29) for
general %r 's is a non-trivial task. We have written a computer program
which computes the general solution up to j=21 (using the FORTRAN
limit of arrays with 20 indices). The program is useful for investigating con-
tact areas of fibers that obey more realistic flexing rules, but the results are
not presented in this paper.

Also, one can formally write down the general solution of (6.29). Let
the j-vector P be a permutation of (1,..., j), and P+ the ( j+1)-vector with
first j elements given by P and last element L. Then

Q� j (%)=:
P

`
j&1

r=1

(%m(r, P)&%r) (6.31)

where the sum is over all permutations P, and m(r, P) is the smallest ele-
ment in P+ that follows r and exceeds r. For example, if j=5, L>5 and
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P=(3, 1, 5, 2, 4), then m(1, P)=2, m(2, P)=m(3, P)=4 and m(4, P)=
m(5, P)=L. For Qj (%) the product in (6.31) runs up to r= j and
%m( j, P)=L.

7. THE LOWER BOUNDS

The simple lower bound (3.3) may be obtained by taking slightly
larger sets Tr of width 2rt instead of 2rt&1. Then (6.29) reduces to

Q� j (%)=2t :
j&1

r=1

Q� j&1(%"%r)+[L&2( j&1) t]) Q� j&1(%) (7.1)

with obvious solution Q� j (%)=L j&1 for all j and %. Thus

Qj (%)=L j&1(L&2jt)+ (7.2)

and so

;
�

N=
1
L

:
N&1

j=0

(1&2jt�L)+

=(N�L)[1&t(N&1)�L] if N�n(L)+1 (7.3)

where n(L) is the integer part of L�(2t). If N>n(L)+1, then

;
�

N=[(n+1)�L][1&nt�L]�1�(4t) (7.4)

In the limit N, L � �, N�L � c this reduces to (3.3).
To derive the stronger lower bound (3.5) we use the values

%r=2rt&1. Then the recurrence relation (6.29) reduces to

Q� j (%)=| :
j&1

r=1

Q� j&1(%"%r)+[L&%1&( j&2) |] Q� j&1(%) (7.5)

where |=2t. We have written the equation in this form in order to derive
a more general solution, applicable in Section 8. The solution for each Q� j

has the form

:
j&1

i=0

cij (L&%1) i | j&i&1 (7.6)
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as one can verify by substitution. For %1=|=1 (i.e., t=1�2 in (7.1)) we
know the solution

Q� j (%)=L j&1= :
j&1

i=0

cij (L&1) i (7.7)

for all L. This proves that the cij are the binomial coefficients ( j&1
i ), and so

the solution of (7.5) is

Q� j (%)=(L&%1+|) j&1 (7.8)

Then substituting (6.28) for Qj in (6.27) we have

Q= :
0�k�&

[c(L&')]k

k!
&c| :

0�k�&&1

[c(L&')]k

k!
(7.9)

where '=%1&| and &=(L&')�|. Thus

e&cLQ=e&c'[P&(&`)&`P&&1(&`)] (7.10)

where `=c| and

P&(z)=e&z :
0�k�&

zk

k!
(7.11)

is the Poisson cumulative distribution. If L � � then & � � and P&(&`)
concentrates on `=1, i.e.,

1 if `<1

P&(&`) � R(`)={1�2 if `=1 (7.12)

0 if `>1

and likewise for P&&1(&`). Thus

e&cLQ � e&c'(1&`) R(`) (7.13)

and so (6.26) becomes

;&(c)=
1
| |

m

0
d`(1&`) e&q` (7.14)
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where q='�| and m=min(1, c|). Thus

;&(c)=[1&1�q+(m+1�q&1) e&qm]�' (7.15)

For the case of current interest, '=&1 and q=&1�(2t), which proves
(3.5).

8. APPROXIMATION FOR THE CONTACT AREA

The lower bounds are based on sets Tr that significantly overestimate
the obscuring effects. It seems clear that by correctly choosing the many-
body interactions 1r(E ), one could write an exact formula for RBCA using
our methodology. Then one could try to evaluate that formula. So far we
have not succeeded with this difficult calculation. Instead we proceed by
choosing Tr 's that seem to be correct in an average sense.

First we note from Section 4 that a single fiber obscures on average an
area TL2=tL, so we choose a fixed T1 of area tL, i.e. of width

%1=t (8.1)

Figure 5 illustrates cases with larger r. Here we have r fibers crossing at the
same point 0 and alternating in direction, with fiber r running up the page.
They form a pyramid-like structure. The box represents the contribution
T1 & } } } & Tr (with our old Ti 's) in our lower bound, added to the obscuring

Fig. 5. The diagonally oriented square is a region of the base obscured by a stack of r fibers,
crossing at the centre and alternating in direction, from an (r+1)th fiber, such as AD,
orthogonal to fiber r.
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set when fiber r is added to fibers 1,..., r&1. In reality, a new fiber AD,
running across the page, is obscured only over the interval BC. Since AB
crosses at a random uniform Y coordinate, the mean obscured distance
is rt. A fiber crossing in the other direction is obscured by fiber r only if it
lies on top thereof, so the obscured distance is 2rt with probability 1�(2rt),
which contributes only 1 on average. Thus the obscuring effect of fiber r,
on average, is approximated by a strip Tr of width 1

2rt for large r. With
(8.1) this suggests we take

%r=
1
2 (r+1) t (8.2)

Now we have the recurrence relation (7.5) with |= 1
2 t. The solution (7.15)

with '= 1
2 t, q=1 and m=min(1, 1

2ct) reduces to

;� (c)=(2�t) me&m (8.3)

which establishes (3.6). For fixed N, summing (6.25) directly gives the
rather simple result

;� N=(N�L)(1& 1
2 t�L)N&1 (8.4)

for N�2L�t.

9. EXTENSIONS OF THE PRESENT WORK

Our results for RBCA, summarized in Section 3, show that our new
methodology can make significant predictions about 3D simulated paper.
We shall present predictions for paper volume, hence density or porosity,
in a future paper. It would be valuable to apply the methodology to more
realistic simulation models, leading one to make more confident predic-
tions about real paper. Desirable extensions include:

(a) Orthogonal fibers with one direction preferred, imitating the
influence of machine direction.

(b) Fibre width greater than one cell, i.e. a finer discretisation.

(c) Fibres with all possible orientations.

(d) Fibres of finite length and mixed lengths.

(e) Fibres with more realistic flexing behaviour.

Regarding (e), one would want to improve on the ramp-like bridges
and structures evident in Fig. 1. A natural improvement is to constrain
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fiber curvature rather than fiber slope. Or one might use a flexing rule that
is consistent with the bending of beams.(10, 5) This would involve significant
modifications of the simulation programs.

The mathematical methodology, however, lends itself readily to dif-
ferent flexing behaviour. One needs only to specify appropriate sets Tr in
(5.8). For example, the deflection of a beam under uniformly distributed
pressure is proportional to the 4th power of its length, so one could take
%r increasing like r1�4 (rather than r). In this case we have no simple solu-
tion of the recurrence relations (6.23). Fortunately the sums (6.25) and
(6.27) for RBCA converge very fast for such %r , so the Q j are needed only
for small j, say j�10. These can be computed in a few seconds.

The flexing behaviour of fibers in real paper might be more complex.
Fibres might be constrained lengthwise in the forming paper, and so resist
flexing. The beam bending mechanism is an assumption rather than an
established fact. The true flexing principle is clearly of central interest, and
needs to be clarified by observation.
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